Stable Subalgebras of Lie Algebras and Associative Algebras
نویسندگان
چکیده
منابع مشابه
Cartan Subalgebras in Lie Algebras of Associative Algebras
A Cartan subalgebra of a finite-dimensional Lie algebra L is a nilpotent subalgebra H of L that coincides with its normalizer NL H . Such subalgebras occupy an important place in the structure theory of finite-dimensional Lie algebras and their properties have been explored in many articles (see, e.g., Barnes, 1967; Benkart, 1986; Wilson, 1977; Winter, 1969). In general (more precisely, when th...
متن کاملOn permutably complemented subalgebras of finite dimensional Lie algebras
Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...
متن کاملNice Parabolic Subalgebras of Reductive Lie Algebras
This paper gives a classification of parabolic subalgebras of simple Lie algebras over C that are complexifications of parabolic subalgebras of real forms for which Lynch’s vanishing theorem for generalized Whittaker modules is non-vacuous. The paper also describes normal forms for the admissible characters in the sense of Lynch (at least in the quasi-split cases) and analyzes the important spe...
متن کاملPrimitive Subalgebras of Exceptional Lie Algebras
The object of this paper is to classify (up to inner automorphism) the primitive, maximal rank, reductive subalgebras of the (complex) exceptional Lie algebras. By primitive we mean that the subalgebras correspond to (possibly disconnected) maximal Lie subgroups. In [3], the corresponding classification for the (complex) classical Lie algebras was completed, as was the classification for the no...
متن کاملSmall Semisimple Subalgebras of Semisimple Lie Algebras
The goal of Section 2 is to provide a proof of Theorem 2.0.1. Section 3 introduces the necessary facts about Lie algebras and representation theory, with the goal being the proof of Proposition 3.5.7 (ultimately as an application of Theorem 2.0.1), and Proposition 3.3.1. In Section 4 we prove the main theorem, using Propositions 3.3.1 and 3.5.7. In Section 5, we apply the theorem to the special...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1967
ISSN: 0002-9947
DOI: 10.2307/1994649